ResearchTSSG News

COVID-19 Research: Treating Lung Tissue Damage due to COVID-19

By 13th May 2020 No Comments

The COVID-19 virus knows no boundaries. Breathing difficulties and shortness of breath are a key indicator of the illness and fatality rates are high among people with underlying health issues such as asthma. Reducing the long-term effect of a patient diagnosed with COVID-19 is paramount. The number of patients leaving hospital to continue their recovery at home without the need for ventilators or oxygen is ever increasing however researchers have asked the question: What does this mean for the health of the lungs? Does this have a lasting effect? Experts from TSSG, Rochester Institute of Technology (RIT), USA, and the University of Tampere (UTA), Finland are investigating. 

(A) Illustrates MSC deposited into the alveoli of the lungs, and (B) illustrates the ultrasound signals emitted to break the polymer casing of the nanodevice.   

Recent analysis of patients suffering from COVID-19 have found that stem cells can be used to repair lung damage as well as control the immune system to suppress cytokine storms (body starts to attack its own cells rather than the virus). Based on this, this specific research is looking at a new delivery mechanism of stem cells encapsulated into a polymer container into the lungs via a ventilator. Once in the right location, the nanoscale devices can be broken down using ultrasound signals emitted externally from outside the body. This will allow precise delivery of the stem cells to the damaged location within the lungs therefore aiding cell and subsequently patient recovery. The nanodevice will remain dormant in the lungs in the event a patient is re-infected.  

Listen to Bruna Fonseca and Dr. Sasitharan Balasubramaniam talk to Rob O’Connor on The Machine Podcast about this project and other research they are doing in TSSG – Listen Here

Researchers: Bruna Fonseca (TSSG), Dr. Michael Barros (University of Tampere, Finland), Dr. Sasitharan Balasubramaniam (TSSG), Prof. David Borkholder (Rochester Institute of Technology, USA), Dr. Mark White (WIT) and Dr. Lee Coffey (TSSG, PMBRC)